A strong limit theorem for Gaussian processes
نویسندگان
چکیده
منابع مشابه
Strong Gaussian Approximations of Product-limit and Quantile Processes for Strong Mixing and Censored Data
In this paper, we consider the product-limit quantile estimator of an unknown quantile function under a censored dependent model. This is a parallel problem to the estimation of the unknown distribution function by the product-limit estimator under the same model. Simultaneous strong Gaussian approximations of the product-limit process and product-limit quantile process are constructed with rat...
متن کاملAlmost Sure Central Limit Theorem for a Nonstationary Gaussian Sequence
Let {Xn; n ≥ 1} be a standardized non-stationary Gaussian sequence, and let denote Sn ∑n k 1 Xk , σn √ Var Sn . Under some additional condition, let the constants {uni; 1 ≤ i ≤ n, n ≥ 1} satisfy ∑n i 1 1−Φ uni → τ as n → ∞ for some τ ≥ 0 and min1≤i≤n uni ≥ c logn , for some c > 0, then, we have limn→∞ 1/ logn ∑n k 1 1/k I{∩i 1 Xi ≤ uki , Sk/σk ≤ x} e−τΦ x almost surely for any x ∈ R, where I A ...
متن کاملThe Local Limit Theorem: A Historical Perspective
The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...
متن کاملCentral Limit Theorem for Stationary Linear Processes
We establish the central limit theorem for linear processes with dependent innovations including martingales and mixingale type of assumptions as defined in McLeish [Ann. In doing so we shall preserve the generality of the coefficients, including the long range dependence case, and we shall express the variance of partial sums in a form easy to apply. Ergodicity is not required.
متن کاملCentral Limit Theorem for Nonlinear Hawkes Processes
Hawkes process is a self-exciting point process with clustering effect whose jump rate depends on its entire past history. It has wide applications in neuroscience, finance and many other fields. Linear Hawkes process has an immigration-birth representation and can be computed more or less explicitly. It has been extensively studied in the past and the limit theorems are well understood. On the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1956
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1956-0090920-6